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Abstract. – A Turing mode in an extended periodically forced oscillatory system can change the classical
resonance boundaries of a single forced oscillator. Using the normal form equation for forced oscillations,
we identify a Hopf-Turing bifurcation point around which we perform a weak nonlinear analysis. We
show that resonant standing waves can exist outside the 2:1 resonance region of uniform oscillations, and
non-resonant mixed-mode oscillations may prevail inside the resonance region.

An oscillator, periodically forced in time, can adjust its oscillation frequency to make it a rational
fraction of the forcing frequency [1]. At very low forcing amplitudes the forced oscillator exhibits
quasi-periodic oscillations consisting of the forcing frequency and the frequency of the unforced os-
cillator. Frequency adjustment, or frequency locking, occurs when the forcing amplitude exceeds a
threshold value that depends on the forcing frequency. In the parameter plane spanned by the forcing
amplitude and forcing frequency these thresholds form tongue-shaped regions, the so called Arnol’d
tongues. Each tongue corresponds to a different rational relation between the forcing frequency and
the oscillation frequency and designates a domain of frequency locking, or resonance, where the os-
cillation is strictly periodic [1].

Spatially extended systems often show synchronous oscillations where all spatial elements share
the same frequency and phase of oscillations. These oscillations usually arise through a Hopf bi-
furcation where a spatially uniform Hopf mode grows from an unstable stationary state. When the
oscillations are periodically forced they may exhibit frequency locking like single oscillators. Spatial
coupling in oscillating media, however, may lead to finite wave-number, or Turing, instabilities [2]
which break the translational phase symmetry; different spatial regions may not share the same oscil-
lation phase. Frequency locking phenomena in spatially extended systems have been studied in various
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contexts, including autocatalytic surface reactions [3], charge-density-wave conductors [4], cardiac ac-
tivity [5], and chemical reactions [6]. The possible effects of spatial instabilities on frequency locking,
however, have not been considered in these studies [7].

In this Letter we focus on the 2:1 resonance, where the system frequency locks to the forcing at
exactly half the forcing frequency. We show that a Turing mode generically exists in this case and that
its coupling with the Hopf mode canextendor, even more surprisingly,reducethe domain of the 2:1
resonance. Our analysis is based on the normal form equation for forced oscillations near the Hopf
bifurcation, the forced complex Ginzburg Landau (CGL) equation. The effect of spatial coupling on
frequency locking in extended oscillatory systems has already been pointed out by Park [8], but has
not been related to a Turing instability.

Consider an extended system with a Hopf bifurcation to uniform oscillations at a frequencyΩ, and
that is periodically forced at a frequencyωf ≈ 2Ω. Near the Hopf bifurcation a typical dynamical
variable of the system can be written as

u = u0 +
[
Aeiωf t/2 + c.c.

]
+ . . . , (1)

whereu0 is the value ofu at the rest state,A is a complex amplitude,c.c. stands for the complex
conjugate, and the ellipses denote higher order terms. The amplitude of oscillationA may vary slowly
in space and time and for weak forcing is described by the forced CGL equation [9]

∂tA = (µ + iν)A + (1 + iα)∇2A− (1 + iβ)|A|2A + γA∗ . (2)

In this equationµ represents the distance from the Hopf bifurcation,ν = Ω − ωf/2 is the detuning,
α represents dispersion,β represents nonlinear frequency correction,γ is the forcing amplitude. In
this study all the parameters exceptν are assumed to be non-negative. The termA∗ is the complex
conjugate ofA and describes the effect of the weak periodic forcing [9]. Throughout this paper we will
mostly be concerned with Eq. (2) for theamplitudeof oscillations. The oscillating system represented
by Eq. (1) will be referred to as the “original system”.

According to Eq. (1) stationary solutions of Eq. (2) describe frequency locked oscillations of the
original system (for thenu oscillates at exactly half the forcing frequency, despite the fact that the
unforced system may oscillate at nearly that frequency). To find the frequency-locking boundary of
a single oscillator we look for stationaryspatially uniformsolutions of Eq. (2). Four such solutions
appear in a pair of saddle-node bifurcations atγ = γb = |ν − µβ|/

√
1 + β2 [10, 11], two of which,

A± = R exp iφ±, are stable to uniform perturbations, where

φ− =
1
2

arcsin
ν − βR2

γ
, (3a)

φ+ = φ− + π , (3b)

R2 =
µ + νβ +

√
(1 + β2) γ2 − (ν − µβ)2

1 + β2
. (3c)

The solutions describe frequency locked uniform oscillations with phases differing byπ. The existence
range of these solutions,γ ≥ γb, forms a V-shaped region in theν−γ parameter plane as Fig. 1 shows.
We call these solutions “phase states”, and refer to the the V-shaped region as the “2:1 resonance
tongue” [12,13].

We now study translational symmetry breaking in the extended system described by Eq. (2) by
considering the stability of the two phase states,φ+ andφ− [14], and the rest state,A = 0 [12], to
nonuniform perturbations. The linear stability analysis of the phase states indicates a narrow range near
the 2:1 resonance boundary where a finite wave-number instability leads to stationary patterns [13].



A. YOCHELIS: FREQUENCY LOCKING IN EXTENDED SYSTEMS 3

ν

γ

−1 −0.5  0.5 1
0

0.5

1

γ=γ
 b

  Frequency locked
uniform oscillations

Fig. 1 – The resonance tongue of spatially uniform solutions of Eq. (2) in theν–γ plane (shaded region). Inside
the tongue the original system responds at exactly half of the forcing frequency. Parameters:µ = 0.1, β = 0,
α = 0.5.

These patterns, however, represent resonant oscillations of the original system and do not affect the
2:1 resonance boundaries.

In the case of a single forced oscillator, the rest state,A = 0, goes through a Hopf bifurcation
at µ = 0. The rest state of the extended system, however, may go through a finite wave-number, or
Turing, instability as well. The dispersion relation associated with the rest state is given by [12]

σ = µ− k2 +
√

γ2 − (ν − αk2)2 . (4)

An examination of this relation reveals a codimension two point,

µ = 0, γ = γc = ν/
√

1 + α2 , (5)

where the Hopf bifurcation to uniform oscillations coincides with a Turing instability [12], as Fig. 2
shows. The Hopf frequency and the Turing wavenumber are given byω0 = να/ρ andk2

0 = να/ρ2,
respectively, whereρ =

√
1 + α2.

To study the system in the vicinity of the codimension 2 point, where|γ − γc| ∼ µ � γc, we can
expand solutions of Eq. (2) as(

Re A
Im A

)
=

{
e0B0e

iω0t + ekBkeik0x + c.c.
}

+ · · · . (6)

The complex amplitudesB0(µt) andBk(µt) in Eq. (6) are of order
√

µ, and describe slow uniform
modulations of the (relatively) fast oscillations associated with the Hopf mode and of the fast spatial
variations associated with the Turing mode. The more general case where the amplitudes are also
modulated in space will be discussed elsewhere [15]. The eigenvectorse0 andek correspond to the
Hopf and the Turing eigenvalues, respectively.

Inserting the expansion (6) into Eq. (2), solving the linear equations at orderµ, evaluating the
solvability condition at orderµ3/2 and rescaling, we find the amplitude equations

Ḃ0 = (µ− iϑ)B0 − (ar + iai)|B0|2B0 (7a)

−(cr + ici)|Bk|2B0 ,

Ḃk = (µ + ρϑ) Bk − r1|Bk|2Bk − r2|B0|2Bk , (7b)
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Fig. 2 – The growth rate (real part ofσ) of perturbations from theA = 0 state at the codimension 2 point,µ = 0,
γ = γc. Two modes become marginal at this point, a Hopf zero-k mode and a Turing finite-k mode. Parameters:
µ = 0, ν = 2.0, α = 0.5, γ = γc ≈ 1.8.

whereϑ = (γ − γc)/α, ar = 4, ai = 2(2ρ2 + 1)β/αρ, cr = 8ρη, ci = 4[2αρ(α + 1) + (3ρ +
α)]β/α− 4η, r1 = 6ρη(1− β/α), r2 = 8− 12β/α andη = α + ρ.

Equations (7) admit three types of nontrivial solutions [16]:
A pure Hopf mode:

B0 =
√

µ/4 e−iΩ0t , Bk = 0 ; (8a)

A pure Turing mode:
B0 = 0 , Bk =

√
α[µ + ρϑ]/[6ρη(α− β)] ; (8b)

A mixed Hopf-Turing mode:

B0 =
√

[−(3β + α)µ− 4αρϑ]/[4(9β − 5α)] e−iΩM t ,

Bk =
√

[(3β − α)µ + αρϑ]/[2ρη(9β − 5α)] , (8c)

whereΩ0 = ϑ + ai|B0|2 andΩM = ϑ + ai|B0|2 + ci|Bk|2 [17].
A linear stability analysis of the pure Turing solution [using Eqs. (7)] gives the stability threshold

α = β; stationary Turing patterns are unstable forβ > α. A linear stability analysis of the mixed-mode
solution gives the stability thresholdβ = 5α/9: mixed mode oscillations are unstable forβ < 5α/9.
We therefore consider the rangeβ > 5α/9 which allows for stable mixed-mode oscillations, and
distinguish between two cases: Case (a)5α/9 < β < α, and Case (b)β > α.

Figure 3 shows bifurcation diagrams for the amplitude of the Turing, Hopf, and mixed-mode solu-
tions in the two cases. In Case (a) [Fig. 3(a)] uniform oscillations are stable for forcing amplitudes up
to γ = γH where

γH = γc +
µ

ρ
(α− 3β) . (9)

Beyond this threshold and up toγ = γS where

γS = γc −
µ

4ρ
(α + 3β) , (10)

stable mixed-mode oscillations appear. BeyondγS stable Turing solutions prevail to the tongue bound-
ary,γ = γb, and beyond.

Case (b) [Fig. 3(b)], like Case (a), involves a transition from pure mode oscillations to mixed-
mode oscillations atγ = γH , but unlike Case (a), the stability of the mixed-mode oscillations persists
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Fig. 3 – Bifurcation diagrams for uniform solutions of Eq. (7) showing the existence and stability ranges of the
two pure mode solutions and the mixed-mode solution as the forcingγ is varied. The vertical axis isR =√
|B0|2 + |Bk|2. The solid (dashed) curves denote stable (unstable) solutions. The thin vertical lines in (a) and

(b) highlight the location of the uniform oscillation boundary,γ = γb. Note that in (b) the uniform oscillation
boundary lies inside the stable mixed-mode region. Parameters:µ = 0.1, ν = 2, α = 0.5, (a)β = 0.4 and (b)
β = 0.55.

beyond the tongue boundary,γ = γb. Mixed mode oscillations destabilize atγ = γM (assuming
ν > µ(β2 − 1)/(2β) [11]), where

γM = γc −
µ

[
(3β − 2α)2 + 3βα

]
ρ (3β + α)

. (11)

The significance of the results described above for Case (a) is that stableresonantstanding waves,
represented by stationary solutions of (7), exist in the rangeγS < γ < γb outsidethe 2:1 resonance
tongue of uniform oscillations. The stationary solutions form through the Turing instability as demon-
strated in a numerical solution of Eq. (2) shown in Fig. 4(a).

For Case (b) in the parameter rangeγb < γ < γM , inside the resonant tongue for uniform solu-
tions, the non-resonant mixed-mode oscillations stably coexist with the phase-state solutions of (2).
Figure 4(b) shows a numerical solution of Eq. (2) with a uniform phase-state in one half of the domain
and mixed-mode oscillations in the other half [the phase-state solutions are not captured by the ampli-
tude equations (7) as the ansatz (6) does not contain them]. Non-resonant (mixed-mode) oscillations
can therefore be realized within the 2:1 resonance tongue for uniform solutions.

AboveγM the mixed-mode oscillations are unstable and patterns evolve toward a mixture of the
two phase states (3) which represent resonant oscillations of the original system.

The new boundaries of resonant oscillations for both cases of the extended system are shown in
Fig. 5. In Fig. 5(a) a point ”R” outside the resonance tongue of uniform oscillations (dashed line)
gives rise to aresonantstripe pattern as shown in Fig. 4(a), whereas in Fig. 5(b) a point ”N” inside the
resonance tongue of uniform oscillations gives rise tonon-resonantmixed mode oscillations as shown
in Fig. 4(b).

The parameter ranges considered in this study are limited but sufficient to demonstrate the exis-
tence of resonant spatial patterns outside the 2:1 resonance tongue, and the existence of non-resonant
patterns inside the tongue. Another mechanism (other than mixed-mode oscillations) that leads to
non-resonant patterns inside the 2:1 resonance tongue is the nonequilibrium Ising-Bloch (NIB) bifur-
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Fig. 4 – Space-time plots of numerical solutions of Eq. (2) using Neumann boundary conditions. (a) The develop-
ment of a pure Turing mode (resonant pattern) outside the 2:1 resonance tongue forβ < α andγ > γS [point “R”
in Fig. 5(a)]. The transverse stripes represent unstable Hopf oscillations. (b) Persistent coexistence of a uniform
phase state with mixed-mode oscillations inside the 2:1 resonance tongue forβ > α andγ < γM [point “N” in
Fig. 5(b)]. In both cases the initial conditions consist of one of the phase states (3) occupying one half of thex
domain and the unstable rest stateA = 0 occupying the other half. The frames show a grey-scale image of the
ReA field. Darker shades denote higherReA values. Parameters:µ = 0.1, ν = 2, α = 0.5, x = [0, 64], (a)
β = 0.4, γ = 1.77, t = [0, 100], and (b)β = 0.55, γ = 1.72, t = [0, 160].

cation [10, 18]. This mechanism is addressed in Ref. [15]. The predictions of this study can be tested
in experiments on the periodically forced photosensitive Belousov-Zhabotinsky reaction [6].
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